Foucault Pendulum Electronics Kit.

DO07_Description_Firmware

www.foucaultpendulum.nl

Document version 2025-11_02

Related Documents [Firmware Source Code

D02_Options.

D05 _Description Electronic Circuits.
D06_Arduino_PinUse_Messages.
D13_Development_Environment, Coding Rules
ATMega2560 Manual

In brief:

This document describes the processes in the firmware which detect the Center- and Rim
Passes, generate the DrivePulses and does the Automatic Amplitude Control.

On the end some words about the averaging algorithm used at several places.

General.
The system has 4 methods to synchronize with the Bob.
This can be selected in the panel Drive Parameters on the GUI.

CenterPass_Magnetic: The timing of the Drive Pulses is synchronized with
CenterPasses detected by a separate CenterPass Detection coil or by the signal coming
from the DriveCoil itself, when the bob flies over it.

CenterPasses Capacitive: The timing of the Drive Pulses is synchronized with
CenterPasses detected by an electrode in the center below the bob, using the 465 kHz
signal on the wire and bob.

Charron Ring: The electronics is prepared to detect the wire touching a Charron Ring,
but no further implementation is done.

Resonance: The electronics and software can deliver DrivePulses at a very stable
frequency which can be adjusted in very small steps. This is for future experiments where
| will try to drive the pendulum with the frequency of the major ellipse axis and try not to
excite the slightly higher frequency of the minor axis. This to limit ellipse growth.

In the firmware we have three detectors: for CenterPasses Magnetic,
CenterPasses_Capacitive and RimPasses Magnetic. The electronic signal for Detecting
RimPasses_Capacitive is implemented in the electronics, but in the firmware not further
than the A/D conversion.

The three detectors function simultaneously, but quite independent of each other.
Each detector has its own time base: a PositionCounter. The PositionCounters for the
CenterPass detectors are set to zero when their CenterPass is detected.

The PositionCounter for the RimPass detector is zeroed by the CenterPass which is
selected for synchronizing the Drive Pulses.

There is a fourth PositionCounter which governs the timing of the DrivePulses and the
associated gating of the magnetic CenterPass signal coming from the drive coil itself.
This PositionCounter Drive is zeroed at the CenterPass selected for synchronisation by
the variable Drive SyncMode.

StateMachine DetectCenter_Cap.

— Peaklewvel

- HalfHzlght

DontLook
EZtortlook

Fig. 1 The signal from the Center electrode and the steps of the detection
process.

The 465 kHz signal (green) from the Center electrode is amplified, rectified and fed to the
analog input channel Adc Center Cap. If the bob is far away there is a small signal called
Baselevel.

When the PositionCounter Cap reaches the value TStartLookForCenter Cap we start
tracking the rising signal. When the value reaches the HalfHeight level at T1 we start a
special PulseWidthCounter and continue tracking the rising signal until it starts falling.
That is the moment of CenterPass detection, and we freeze the data from the PMS as
Center North,S,E, W, the PeakLevel as APeakCenter Cap and the PositionCounter Cap as
TPassCenter Cap, and zero the PositionCounter Cap.

If the SyncMode == SyncByCenter Cap we also zero the PositionCounter Drive for the
timing of the DrivePulse and PositionCounter Rim for the RimPass detector.

From here on we track the falling signal until it becomes lower than the HalfHeight level.
There we freeze the value of the PulseWidthCounter as HalfHeightWidth of the pulse.

We wait until the bob is near the maximum amplitude, when the PositionCounter Cap
reaches TQuarterSwing, which was calculated at the CenterPass.

Here we take some 20 samples and average them as ABaseCenter Cap.

We also average the APeak Center_Cap and recalculate the HalfHeight level as halfway
the avaraged PeakLevel and Baselevel.

Outside the statemachine is constantly checked if
PositionCounter Cap > TMissedCenter Cap. In that case we decide that the CenterPass
has been missed and restart a try to find synchronisation

Also when the signal ForceResync is given from the GUI the statemachine is kicked to the
Idle state to try for a new synchronisation.

The background for the measurement of the half-height width of the capacitively
detected center pulse is that it is a measure for the velocity of the bob and so for the
amplitude of the pendulum. (A correction may be needed if there is ellipticity).

Fig 2. The signals from the Capacitive detection.

Blue: Rim Pass signal Capacitive at analog input A6. It is clearly to see that detecting the
RimPasses requires a rather complex algorithm. For that reason I did not yet implement
that detection. The shape of this signal might be much more usable when the bob is
shaped more like a thin cylinder.

Yellow: The CenterPass signhal at analog input A4.

Green: The diagnostic signal at pin A12 toggles at the detection of CenterPasses.

Red: The diagnostic signal at pin A11 shows the timing of the HalfHeight transitions for
the HalfHeight Width determination. The HHWidth is an indication for the velocity of the
pendulum and therefore for the Amplitude.

These signals are from my sub-meter pendulum with a period time of ca. 1.8 seconds.
The pendulum had a ring shaped electrode below the bob in an attempt to detect rim
passes and use them for amplitude control.

StateMachine DetectCenter_Mag.

FoundCenter

DontlLook

Fig 3. The signal from the CenterCoil and the steps in the detection process.

The signal (green) from the CenterCoil is amplified and lifted to aproximately half the
range of the A/D converter (0..5V, 10 bit resolution, so 0..1023 in value. Halfscale is 512)

We start in the state /d/e where some preparations are made and we jump to the state
DontLook and wait until the PositionCounter Mag has reached the value of the
parameter TStartLookForCenter Mag. Then some preparations are done and we jump to
the next state TrackRising where we track the rising signal until it starts falling. We detect
falling as 5 units below the preceding value to prevent false triggers from noise. Here we
decide that we are at the peak of the signal and freeze that value as APeakCenter Mag.
We jump to the state WaitCenter where we wait until the signal crosses AMidCenter Mag.
AMidCenter Mag is initially set to 512, but it is augmented later on with a more precise
value.

The AMidCenter Mag crossing is the CenterPass event. Here we freeze the data from the
PMS as Center North,S,E,W, we copy the value of the PositionCounter Mag as
TPassCenter Mag and zero the PositionCounter Mag for the next halfswing.

If the SynchronisationMode is set to SyncByCenter Mag we also zero the PositonCounter
for the DrivPulse generation.

Also the PositionCounter_Rim is zeroed if configured that way.

From here on we wait until the PositionCounter Mag reaches TQuarterSwing, which was
calculated at CenterPass as one half of TPassCenter Mag , that is when the bob is at its
maximum distance from the center. Here we take a small number of samples and
average them as the new AMidCenter Mag. Then we return to the state DontLook and
wait for the next HalfSwing.

Outside the statemachine is constantly checked if
PositionCounter Mag > TMissedCenter Mag. In that case we decide that the CenterPass
has been missed and restart a try to find synchronisation.

Also when the signal ForceResync is given from the GUI the statemachine is kicked to the
Idle state to try for a new synchronisation.

StateMachine DetectRim_Mag.

CenterPass

Fig. 4. The signal from the RimCoil and the steps of the detection process.

The signal (green) from the RimCoil is amplified and lifted to aproximately half the range
of the A/D converter (0..5V, 10 bit resolution, so 0..1023 in value. Halfscale is 512)

Starting at the left at the time of a CenterPass we expect a positive going signal when the
bob passes the RimCoil outwards and a negative signal when the bob goes back inwards
to the center.

During some time after a CenterPass we ignore the signal as it may be distorted by the
DrivePulse. From TStartLookForRim1_Mag we track the rising signal until it starts falling.
At that moment we freeze the value of the PositionCounter as TPassRim1_Mag, and the
value of the Rim signal as APeakRim1_Mag. We detect falling as 5 units below the
prceding value to prevent false triggers from noise.

When the falling of the signal has not been detected when the PositionCounter Rim
reaches TMissedRim1_Mag we decide that the Rim1l-pass is missed. This information is
only reported to the GUI and has no further effect on the working of the system.

To detect TPassRimZ2_Mag, the time of the return passage, we follow the same procedure,
but with the inverse signal polarity.

Shortly after a new CenterPass, that is when the bob is far away from the RimCoil we take
a small number of samples and average them as the new AMidRim_Mag.

AMidRim_Mag is used to calculate the absolute amplitude of the APeakRim signals.

If the absolute amplitudes of the Rim1 and Rim2 signals differ substantially something
very strange is going on.

In the GUI the amplitudes from successive HalfSwings are subtracted as ADiff Rim1_Mag.
If that difference is not very small it tels us that the RimCoil is not laying perfectly
horizontal.

Also the difference in TPassRim1 Mag is calculated. This difference tells us about how
well the RimCoil is centered.

7 : . r - -] . . = u v
AR R R R R LR R FR R R RN R PR R RN ER R PR RR RN N R RN RN RN PR RN RN) |
. : H H * = a . a ' = ' " . .

Fig 5. Magnetic Signals on the oscilloscope.

Yellow: CenterCoil signal on the Arduino Input A4

Green: Diagnose signal on pin Al4 toggles on CenterPasses.

Red: RimCoil signal on the Arduino input A6.

Blue: Diagnose signal on pin A13 goes high at Rim1 pass and low on Rim2 pass.

In both analog sighals we see the disturbance from the DrivePulse, shortly after the
CenterPass.

These signals are from my 4 meter pendulum with a period time of 4.2 seconds.

DrivePulse Generation.

The Drive Pulse time is generated in the function /SR (TIMERI_COMPA_vect), the 20 kHz
interrupt handler for Timer 1, which also calls the Center- and Rim Pass detectors.

See the document “DO4 Description of the Electronic Circuits” for the circuit description.
The Drive Current is set by the boolean MaxDrive, which is set by the active Amplitude
Control mechanism, or forced from the GUI.

The DrivePulse timing is given by the values of Drive Start and Drive _Stop, which in the
GUI are calculated from the parameters Drive_Position and Drive_Width.

The option to use the signal from the DriveCoil to detect CenterPasses requires two other
signals to be set, just before the DrivePulse begins and a longer time after it stopped.
This gating prevents the sensitive pre-amplifier for the CenterPass signal to be overdriven
by the DrivePulse.

Fig 6. Signals in the DrivePulse circuit.

Yellow: The /DRV signal at Mega pin 41.

Blue: The signal at TP_I_DRV, across the current sensing resistors R32,35

Green :The signal at diagnose pin A15 showing the 20 kHz signal. We can see that the
puls lasted 10 ticks, which corresponds to the setting at the time of taking this picture.
Red : The signal at the tab of transistor Q3. We can see that it is going down ca. 9 Volt
during the pulse. The overshoot at the start and ending of the pulse are due to the
inductance of the coil. This is a normal phenomenon.

Automatic Amplitude Control.

Two methods of keeping the pendulum’s amplitude constant are implemented.

Using a Rim Coil.

Here the time from CenterPass (either Capacitive or Magnetic) to the first, outgoing
RimPass is used as a measure for the actual amplitude.

The RimPass times are averaged and compared with a precalculated value
TargetAmplitudeControl. When it takes to long to reach the RimCoil we decide the
pendulum’s amplitude is to small and we set the boolean MaxDrive, which causes the
maximum drive strength to be used. Otherwise MaxDrive is set to false and the minimum
drivestrength is used.

Using the width of the CenterPulse Capacitive.

The Half-Height width of this pulse is determined at each pass, averaged and compared
with the precalculated value TargetAmplitudeControl. When the witdh is to large we
decide the pendulum’s amplitude is to small and we set the boolean MaxDrive, which
causes the maximum drive strength to be used. Otherwise MaxDrive is set to false and
the minimum drive strength is used.

So in both cases the compare action is the same, only the calculation of the target value
differs. The compare action is done in the firmware, the precalculation is done in the GUI.
No Automatic Amplitude Control.

If this option is selected one should set the Drive strength to a fixed value with one of the
checkboxes ForceMinimum or ForceMaximum in the Drive Parameter pane.

Changes in the amplitude can stil be seen and logged as changes in TPassRim1l_Mag

and / or THHWiIdth, if implemented and enabled.

Leaking Bucket Averager.
On several locations in the firmware and in the GUI an averaging algorithm is used,
known as the “Leaking Bucket Averager”. The basic algorithm is:

av = av - av/F + New/F.

In words: to get the new average we subtract a fraction from the old average and add the
same fraction of the new sample.

When we deal with integer numbers and we chose the fraction F as 1/n, where nis a
power of two then the implementation becomes very effective, because division and
multiplying by a power of two involves only bitwise shifting of the number. So we do:

av =av - (av >>n) + (new >>n).

Unfortunately if we do it this simple the least significant n bits would drop off by the
shifts. Therefore we think everything shifted n bits to the left and it becomes.

avs = avs - (avs >>n) + (new) ; and av = avs >> n;

In fact we use fixed point aritmetic, where the separating point is n bits from the right.
Often a 32 bit long integer is needed for avs to prevent overflow.

Such a filter behaves as a first order low pass filter with a time constant of Fs / 2" where
Fs is the sample frequency.

The -3dB corner frequency of such a filter is F3¢s = Fs / (2 T 2").

On the PC platform we can just use floating point aritmetic because of the much faster
CPU’s there.

