Foucault Pendulum Electronics Kit.

D03_Functionality of the GUI_Pendulum program

www.foucaultpendulum.nl

Document version	2025-11-03
	D02_Options Parameters

In brief:

This document describes the functionality of the GUI Pendulum program.

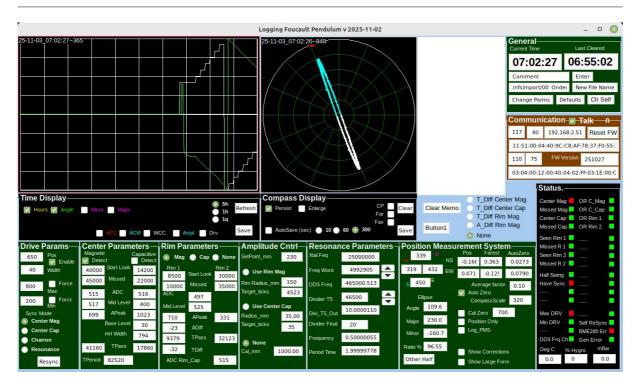


Fig 1. Overview of the GUI_Pendulum.

Yes, at first sight it looks complex, but in fact it is much better structured than in the older version. Besides that, it supports many more functions and options.

From left to right, top to bottom:

1/ Time display, with Settings Panel.

Gives a display as function of time of several parameters.

The data enter the graph on the right side and are shifted left 1 pixel at each new entry. The display area is 500×320 pixels, 50×320 pixels, 50×320 pixels, 50×320 pixels, 50×320 pixels per div.

Certain parameters may need better scaling. This can be done by editing the unit u_t imedisplay.

There are two time scales:

Fast: one entry per halfswing of the pendulum.

Slow: Selectable 1 quarter, 1 hour or 5 hour per division.(select with the radio buttons)

ACC: Peak amplitude of the Capacitive CenterPass signal.

This tells us a.o. about the height of the bob and the elipticity.

ACM: Peak amplitude of the Magnetic CenterPass signal.

This tells us a.o. about the height and the velocity of the bob and the elipticity.

WCC: Half-Height width of the Capacitive CenterPass signal.

This tells us a.o. about the velocity of the bob and the elipticity.

Ampl: The measured amplitude of the pendulum.

Check that it is constant.

Drv: The amount of drive (Min, Max) which is used by the AmplitudeControl mechanism.

Tells us that the Amplitude Control mechanism is operating.

if the Min / Max ratio differs much from 50% the Drive-Strength- and Drive-Timing parameters should be reconsidered.

On the slow scale the following values can be displayed:

Hours: Time of the day in hour steps.

Angle: The Precession Angle of the swinging plane in degrees.

Top: 180 West, +90 North, Center: 0 East, -90 South, Bottom: -180 West.

Minor: The amplitude of the minor axis of the ellipse.

Major: The amplitude of the major axis of the ellipse. (= pendulum amplitude) If the Automatic Amplitude Control mechanism is functioning this should be rather constant.

The button **Refresh** refreshes the display manually. (normally this is done at each halfswing)

The button **Save** causes a .png image of the display to be saved on the harddisk of the GUI PC. The saved images will have a DateTimeStamp as the filename.

2/ Compass display, with Settings Panel

Gives a live display of the pendulum's movement in the horizontal plane.

If the PMS is adjusted correctly the top represents North, etc.

The circles have radii of 4, 32, 64, 96, 128 and 160 pixels.

On each message arrival (10 Hz) the position of the bob is plotted on the display.

The dots either persist, or disappear when the next message arrives. (Checkbox Persist) During *HalfSwing==true* the dots are light blue, otherwise white.

The checkboxes on the right allow certain diagnostic info to be displayed.

CP: A thick green dot indicates the position measured at the CenterPass.

Far: A red dot at the blue peak indicates the data point the farest away from the center.

Fav: A thick blue dot there indicates the averaged position of the farest dot.

A small red circle on the outer circle of the display indicates the direction of the swinging plane = Precession Angle.

Note that it is not possible to distiguish between the first and the second half of a complete foucault revolution, other than by counting halfswings 1-2-1-2-1-2 and not loosing count. We regard the blue half as a pointer to the precession angle.

The checkbox **Enlarge** increases the scale of the display by 4. This is helpfull during adjusting of the gains in the PMS.

The checkbox **AutoSave** enables the display to be saved as a .png image each 10, 60 or 300 seconds. When autosave is triggered the display is first cleared, then filled with bob positions for a few full swings, and then saved. The animated images on the website are made using this feature.

The **Save** button causes the image to be saved as is, without first clearing the display. The saved images will have a DateTimeStamp as the filename.

3/ Memo.

Shows certain alpha-numerical messages. Some controls are below the memo field. The button **ClearMemo** clears the Memo field.

The button **Button1** is a diagnostic tool. It can be assigned to any function you like to test, by modifying the source code.

The **RadioButtons** allow values of the succesive CenterPass times to be shown in the memo field. Either from the Capacitive or Magnetic CenterPass detection or the differences in signal amplitude from the succesive Rim1-Passes.

If selected these values are also shown graphically on the TimeDisplay with the fast timescale. (one entry per HalfSwing).

T_Diff_Center Mag: we see from the magnetic CenterPass detector:

Time of CenterPass, Difference with the previous pass, PeriodTime.

T_Diff_Center Cap: we see from the Capacitive CenterPass detector:

Time of CenterPass, Difference with the previous pass, PeriodTime.

T_Diff_Rim_Mag: we see from the magnetic RimPass detector:

Time of Rim1Pass, Difference with the previous Rim1Pass.

A_Diff_Rim Mag: we see from the magnetic RimPass detector: *Peak Amplitude* of the signal from the RimCoil during the outgoing Rim1 Pass,

Difference with that signal from the previous Rim1 Pass.

None: None of these values are shown or plotted on the TimeDisplay.

The differences in CenterPass and RimPass times can be used to check / adjust the centering of the detection coil or electrode. Investigate the differences with the pendulum launched in two perpendicular directions.

The differences in the peak signal amplitude from the Rim Coil in succesive passes tell us about the horizontality of the RimCoil, and likely also the other coils. We'll see the value of the most recent pass and the difference with the previous pass.

Investigate the differences with the pendulum launched in two perpendicular directions.

4/ General.

Shows Time-of-the-day, Last time the Compass Display was cleared,

Allows entry of a comment into the Logfile:

(write a comment and press the adjacent **Enter** button)

The comment is entered in both the data logfile and the events logfile.

New File Name Allows to start new logfiles by generating a new filename.

LogfileNames are automatically generated at the start of the program and at midnight, and have a DateTimestamp as filename.

Button **Change Parameters** causes the current settings to be transferred to the Arduino. There they will also be stored in EEPROM to be used after a reboot.

The parameters are also written to the Parameter file, to be read at the startup of the program.

Button **Defaults** set pre-programmed default values for many parameters. You can set your own defaults by editing the source code in unit u main.

Button **Cir Self** causes flag "Self Resync" to be cleared.

5/ Communication.

6/ Drive Parameters.

The Checkbox **Talk** starts / stops the Ethernet communication with the Arduino on the BobControl board.

The button **Reset FW** causes the Arduino on the BobControl Board and other hardware there to be reset.

Other fields show the number and length of the messages sent to the Arduino, the IP address of the Arduino, the first byte values in the message sent to the Arduino, the number and length of the message received from the Arduino, the version of the Arduino Firmware and the first byte values in the message received from the Arduino. The byte values are in Hexadecimal notation.

All numeric values are in sample ticks.

Drive Position: #ticks from CenterPass to Mid of Drive Pulse.

Drive Width: #ticks for the width of the Drive Pulses. Checkbox **Enable:** Enable / disable the Drive Pulses.

Max: PWM value for the maximal current of the Drive Pulse to be used by the amplitude control mechanism. Range 0..1023

Min: Minimum PWM value for the same purpose.

The checkboxes **Force** set the Min or Max values, overruling the Amplitude Control Mechanism.

The radiobuttons let us chose between sources of Drive Timing,

CenterPasses Magnetic,

CenterPasses Capacitive,

Charron Ring, (not yet implemented)

Resonance Mode. (partly implemented)

The **Resync** button sends a signal to the Arduino to do a complete startover of the synchronisation process.

7/ Center Parameters.

All numeric values are in sample ticks.

The checkboxes **Detect** enable/disable the detectors for CenterPasses_Magnetic or CenterPasses Capacitive. The detectors can work simultaneously.

Separate for Magnetic or Capacitive CenterPass detection we can set values for:

StartLook: Start looking for a Pass from this value of the PositionCounter.

Missing: When the PositionCounter reaches this value we decide that the CenterPass has been missed. This results in a retry as if the button Resync was pressed.

ADC: the actual value of the CenterPass signal.

MidLevel:

For the Capacitive method the HalfHeight level at which the width of the pulse is measured.

For the Magnetic method the level at which the CenterPass is detected.

APeak: The peak level of the most recent CenterPulse.

Base Level: For the Capacitive method only: the signal level when the bob is far away. It is used to calculate the HalfHeight level for the pulsewidth measurement.

HH Width: Half Height width of the Capacitive Center Pulse. This is a measure for the velocity of the bob.

TPass: The HalfSwing time of the most recent pass.

TPeriod: The period time (full swing) derived from either the magnetic or capacitive CenterPass detector, depending on which is selected to synchronise the DriveTiming.

8/ Rim Parameters.

All values are in sample ticks.

Only Magnetic Rim Pass detection is implemented. Capacitive Rim Pass detection is only prepared in the hardware. The signal is available in the software but nothing is done with it.

On top the RadioButtons to select the which CenterPasses will synchronize the RimPass detector:

Mag: The CenterPass Magnetic will synchronise the RimPass detection.

Cap: The CenterPass Capacitive will synchronise the RimPass detection.

None: The RimPass detector is disabled. Separate for first and second RimPass:

StartLook: Start looking for a RimPass from this value of the PositionCounter. If we start looking to early the induction from the Drive Coil may cause a false reading.

Missed: If the PositionCounter reaches this value we decide that the RimPass is missed.

ADC: The actual value of the signal from the Rim Coil.

MidLevel: The RimCoil signal when the bob is near the Center. This level is used to calculate the absolute peak amplitudes of the Rimcoil signal. The signal is averaged over many periods of the pendulum.

APeak: The absolute peak values of the rimcoil signal at the passes.

ADiff: The difference between the last and the previous APeak of the Rim1 Pass. This difference tells us something about the horizontality of the rimcoil. These values are also listed on the memofield and plotted on the TimeDisplay when the selection is made with the radiobuttons below the Memofield.

TPass: The values of the PositionCounter at the Passes.

TDiff: The difference between the last and the previous Rim1 Pass times. This can tell us about the centering of the RimCoil.

ADC_Rim_Cap: The actual signal from the Capacitive Rim detection channel. No more than this is implemented for Capacitive Rim Pass detection.

9/ Amplitude Control.

With the radiobuttons the method of automatic amplitude control can be selected to use either the magnetic **RimPass** time, the width of the **Capicitive Center** pulse, or **no** automatic control.

SetPoint mm: the target value for the pendulum's amplitude in mm.

For Amplitude control based on Magnetic Rimcoil Passes:

Rim Radius mm: The radius of the RimCoil used.

Target ticks: The calculated value in ticks for TPassRim1. This value is calculated from SetPoint, RimcoilRadius, sample frequency and the measured period time of the pendulum.

If TPassRim1 > TargetTicks the amplitude is to small, and Max Drive current is used. If TPassRim1 < TargetTicks the amplitude is to large, and Min Drive current is used.

For Amplitude control based on Capacitive CenterPulse width:

Note that this option is experimental and not yet completely implemented and tested.

Radius_mm: The radius of the Center electrode. The radius of the bob's electrode should be the same.

Target_ticks: The calculated target value for the HalfHeight Width of the Center Pulse. If HHWidth > TargetTicks the the amplitude of the pendulum is to small and Max Drive current is used.

If HHWidth < TargetTicks the the amplitude of the pendulum is to large and Min Drive current is used.

Currently the calculation of Target_ticks from the electrode radius is not yet implemented. In stead the Radius mm value is copied to the Target ticks field.

Cal_mm provides a calibration factor for when no amplitude control is used. It converts the normalized values in PMS-units to mm.

Without Amplitude Control the amplitude of the pendulum will depend solely on the amount of energy delivered to the bob and the friction the bob experiences, mainly air friction.

The amount of energy delivered to the bob depends on the height of the bob above the DriveCoil, the drive strength (Force Min or Force Max should be active), the Drive Current setting, the Width of the Drive pulse, the timing (DrivePosition) w.r.t. the radius of the DriveCoil and the position of the bob at the driving moment. The latter depends on the bob's amplitude, so the effect could either increase or decrease with the amplitude. In other words, it depends on many factors whether there is a stabilizing effect.

10/ Resonance Parameters.

Note that this option is experimental and not yet tested in a pendulum.

The idea is to drive the pendulum with the frequency of the major axis of the ellipse, and not excite the slightly higher frequency of the minor ellipse axis. This requires a very stable frequency source which can be adjusted in very small steps.

For this we have the Direct Digital Synthesizer (DDS) which generates the 465 kHz signal for the PMS. This frequency can be adjusted in steps of approximately 0.1 Hz by changing the 28 bit FrequencyWord. The 465 kHz signal is used as a clock signal for the Arduino Timer 5 which devides that frequency by an adjustable value. That signal goes to a software divider called DeviderFinal which triggers the Drive pulses.

Xtal FReq: the frequency of the crystal oscillator on the DDS module; 25 MHz.

FrequencyWord: The 28 bit Frequency Word for the DDS.

DDS Freq: The frequency the DDS produces. This is the frequency of the signal on the pendulum's wire and used for th ePMS It should not differ more that a few 100 Hz from 465 kHz.

Divider T5: The division fator for Timer T5.

Div_T5_Out: The output frequency of divider T5.

Divider_Final: The division factor for Divider_Final (hard coded in the FW) **Frequency** and **Period Time:** for the final Drive Pulses to be generated.

The values **FrequencyWord** and **Devider_T5** can be adjusted with the up-down buttons. Note that the value **DividerT5** must be < 65535, the range of a 16 bit unsigned integer.

11/ Position Measurement System.

Upper left we see 4 fields which show the actual values of the 4 signals **North**, **South**, **West**, **East**. These are ADC values from the 10 bit A/D converter in the Arduino, so they range from 0 to 1023.

The **Pos** fields show the normalized values **PosNS** and **PosEW**.

To find the PrecessionAngle we search for the position the farest away from the center. If found the PosNS and PosEW values are shown in the fields **Farest**. This search is done only in the "blue" HalfSwing, so the ratio between these values gives us the precession angle for the whole precession circle.

The fields **AutoZero** show the correction values when AutoZero is enabled.

This corrects the PosNS and PosEW values for small DC offsets.

A small offset will introduce an error in the calculation of the length of the minor ellipse axis.

The field **Average factor** allows to set the average factor for the autozero corrrection. The value must be $0 \le 1$. The lower the factor the more averaging is done and the slower the correction reacts. A value of 0.1 will do in most cases.

Compass Scale sets a value for the scale of the compass display.

The fields under "Ellipse" show the values for

Precession Angle in degrees (counting CCW up from East = zero).

Length of the **Major** ellipse axis in mm, using the applicable calibration.

Length of the **Minor** ellipse axis in mm, using the applicable calibration.

Ratio Minor / Major axis or the ellipticity in %.

The Checkboxes do:

Auto Zero: Enable / Disable Auto Zero corrections. When disabled the calculation of the correction values will continue.

Cal Zero: For calibrating the gains of the 4 PMS receivers. This procedure should be done with the bob in the rest position. The display shows 4 differently colored blips, 1 for each receiver. Adjust the gains such that the blips stay in the center. To this adjustment belongs a target value for the amplitude of the 4 channels. This is shown in the adjacent field. It is hard coded.

During this adjustment it can be convenient to show the **LargeForm** with the numerical values.

Position Only: Only Position data are processed. Combine this with Cal Zero.

Log PMS: Write a separate logfile with only PMS data.

Show Corrections: Show a form where correction data for the PMS can be entered. Background: The PMS suffers from a small amount of non linearity and cross talk. (pillow shaped distorsion) This is a preparation for a future correction algorithm. (no further implementation yet)

Show Large Form: Show a large form with the ADC values. This is helpfull while adjusting the gains of the receivers and so. The large form can be read from quite some distance.

12/ Status.

The Status field show the values of the bits in the Status word (32 bit) green = 0, red = 1. **Seen Center** and **Missed Center** for **Mag**netic and **Cap**acitive detection. Flash shortly. **Seen** and **Missed Rim 1** and **Rim 2**. Flash shortly.

HalfSwing: We are in the "blue" HalfSwing.

HaveSync: The active Center Pass Detector is in sync with the bob.

Using **Max** or **Min** Drive Current as dictated by the Amplitude Control mechanism. (none when Drive is disabled. Also reacts on Force Max or Min).

DDS Frq Ch: When the Resonance Tracking Mechanism (not yet implemented) has changed the DDS frequency.

Out-of-Range indication for the Center and Rim detection signals. (Flash shortly)

SelfResync: The Arduino Firmware has detected an Out-of-Sync condition and restarted the synchronisation process. (partly implemented)

BME280 Err: The climate sensor in the topunit could not be initialized.

Gen Error: General Error. Currently not assigned.

At the bottom the temperature , relative humidity and barometric pressure as measured by the BME 280 climate sensor in the topunit.	

Note:

Most controls (textboxes, checkboxes, etc) have a so called hint, which appears when you put the mouse pointer above the control, but without clicking.

The hint gives some information about the purpose of the control.

For controls to enter parameters or settings the hint can start with one or two asterisks.

- * This parameter is saved in the Parameter file and retreived at startup of the program.
- ** This parameter is also saved in EEPROM of the Arduino Mega on the BobControl Board and retreived when the Arduino starts over.