Tidal accelerations and
dynamical properties of
3-df pendula

René Verreault

Department of Fundamental Sciences
University of Quebec at Chicoutimi
555, Boul. de I'Université

Saguenay (Quebec)

Canada G7H 2B1

Rene Verreault@ugac.ca

1 Introduction

In the abundant litterature on the spherical pendulum and in
particular on the Foucault pendulum, the system generally con-
sidered consists of a point mass constrained to move on a spheri-
cal surface, when not projected on a horizontal plane. However if
one is interested in studying very subtle perturbations of the
spherical pendulum, it is necessary to deal with the "physical
pendulum” altogether. An oscillating mass with 3-D extension
usually lacks rotational symmetry about the spin axis, which is
the line joining the instantaneous suspension point and the centre
of mass, hereafter called the "bob", of the pendulum. The spin
constitutes therefore an inherent third degree of freedom (df) for
every physical pendulum. For the usual Foucault pendulum
where a heavy mass is suspended by a metal wire, the third df
takes the form of a torsion pendulum with a restoring torque
originating from the elastic properties of the wire. However, for
the ballborne pendulum of the Allais (paraconical) or Goodey
type, [1][2] the spin motion is more complicated since there is es-
sientially no restoring torque, except for a very small rolling fric-
tion torque at the area of contact. Spin motion is nevertheless ob-
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served in practically every run, but to the author's knowledge,
nobody, including Allais and Goodey, [1] has published on the
subject. The experimental data suggest that there is a connection
between the ellipticity of the bob orbit, the precession of the el-
lipse and the growth of an angle of spin. The purpose of this arti-
cle is to study that relation and to try to find out whether, accord-
ing to classical mechanics, it plays a role in the influence of the
relative motion of the Earth, the Moon and the Sun on a 3-df
pendulum.

2 Theory

In order to estimate the possible influence of the Moon, say,
on the pendulum motion through tidal effects, one may first con-
sider the main tidal components over a few days interval. On
such a short arc compared to the whole Earth orbit, the motion of
the Earth-Moon centre of mass is considered rectilinear enough to
be the origin of an inertial system. However, the centre of the
Earth is also moving at 0,73 Earth radius from that origin. If Qu is
the orbital angular velocity of the Moon, the centripetal accelera-
tion of the Earth centre is 0,73rQwm?, which, unlike the surface cen-
tripetal acceleration rQ?, is neither constant nor included in the
apparent gravitational acceleration g at the Earth surface. The
three orders of magnitude ratio between the two justifies taking
the Earth centre coordinate system as inertial. The Qm? term
could be added in a refined study if necessary.

As already pointed out by Munera, [3] the suspension point
S is not a good laboratory reference for pendulum motion since,
in a ballborne or paraconical pendulum for instance, S wanders
somewhat erratically on a flat surface when the bob is moving.
Even for a standard Foucault pendulum, the true height of the in-
tersection point S between the vertical and the wire centre line
changes with the amplitude and with the azimuth (suspension
anisotropy) of the oscillation. This is namely responsible for the
Kamerlingh-Onnes ellipses and precessions which are observed
in practically every physical pendulum. [4] Therefore, experimen-
tal measurements are best made with reference to some alidade
centre C which is fixed relative to the earth surface. Figure 1
shows the various vectors pertaining to that situation. The equa-
tion of motion in the laboratory system takes the form:
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Figure 1. Pendulum geometry referred to the centre of the Earth.

Equation (1) is equivalent to Allais' Equation (4), p. 127 of his
book, [5] except for a change of the laboratory origin in favor of
the alidade centre C instead of the suspension point S.

It must be said at this point that the normal tidal effect due to
the body i as the Earth rotates amounts to a periodical tilt of the
local vertical at the i™ synodic rotation period of the Earth,
eventually including some harmonics. For a 20-meter Foucault
pendulum at mid latitudes, the centre of the elliptical bob orbits
will describe its own ellipse with semi-axes of the order of 0,1
mm, under the influences of the Moon and the Sun. Such a tidal
tilt would decenter a 1-meter pendulum by approximately 50 pm.

3 Precession through gyroscopic effect

The airplane pilot's way of looking at gyroscopic effects is: if
you want the horizontal axis of a rotating disk (propeller) to point
upwards as per pushing on the bottom part of the disk plane, the
effect will be as if the same push were applied 90° farther in the
rotation direction. A cw rotating propeller as seen by the pilot
will precess toward the right on a nose-up command, and vice-
versa. This reasoning can be applied to the pendulum in each
half-cycle as the Earth deviates the horizontally lying axis of
swing at a steady rate.
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Let us assume that a pendulum at the equator is swinging in
a north-south vertical plane, after a start from the southern
hemisphere at t = 0. The angular momentum vector about S is
pointing eastwards for the first half-cycle. The Earth rotation is
commanding "nose-down", so the pendulum will precess to the
left. On the next half-cycle, the pendulum angular momentum is
now point west and the Earth commands "nose-up". The result is
a precession to the right exactly cancelling the effect of the
preceding one. Hence the principal normal tidal effect due to the
Moon and observable in the laboratory is:

1° from Section 2: an extremely small alternating tilt of the
vertical with a 12,4-hour period and an amplitude of ~10rad;

2° from above: absolutely no net precession due to that tilt.

4 Precession and elliptical orbits due to perturbations
at the pendulum frequency @

Perturbations having a rigid phase relation with the pendu-
lum oscillation are especially prone to induce parametric amplifi-
cation of some of the parameters. For instance, parametric ampli-
fication of the b-axis results in the growth of elliptical motion. Us-
ing perturbation methods, Pippard wrote an illuminating paper
on that subject. [6] He considers, on the right-hand side of the dif-
ferential equations, a perturbing force resolved into four compo-
nents as follows (index c for cosine, and so on):

Fac cosat + Fas sinat along the major axis, (2a)
F. cosat + F sinat  along the minor axis, (2b)

It turns out that the force component in phase with the mo-
tion on any axis generates elliptical motion, while a component at
90° out of phase with the motion on any axis generates preces-
sion. This is just a generalization of what happens with the Fou-
cault precession, where the Coriolis force is at 90° out of phase
with the motion along the major axis. More precisely, the preces-
sion angular velocity is given by

Q p = (Fbs + EFac )/2maa) (3)
where £ =b/a; and the rate of growth of ellipticity is given by
£=—-(F, — &)/ 2maw. (4)
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5 Lunar tidal effects on the pendulum

In Equation (1), the tidal term from the Moon is (9,, = Oye) -

It is however pertinent to separate, as Allais did, the tidal contri-
butions at various frequencies: first a rapidly varying term at the
period of the pendulum T=21Ww , and second, a slowly varying
term involving the Earth synodic period Tt = 24,8 h and the
Moon synodic period Tm = 29,5 d. For that purpose, let us define
an intermediate point C as the centre of the pendulum orbit,
which coincides with the instantaneous rest point of the bob if the
swing amplitude were zero. Refining Allais' formalism, one has

(gM _gME) =(gM _ng) +(g|v|s _gME) (Allais) (5a)
or (gM _gME) = (gM _gMC) + (gMC _gMS) + (gMS _gME)' (5b)

Allais' last term above has already been dealt with in Section
3, at least for the Earth rotation period. It has been found that it
results in tilting the vertical. So, added to any motion of the sus-
pension S at frequencies well away from pendulum resonance,
point C will describe a tiny ellipse, submillimeter in size, which
could possibly be modulated at the longer lunar obital period Twm.
That tilting should be measurable. There remains now the short-
period term, which can be interpreted with the help of Figure 2.

g (0) m
8,78, %= 8 @
MOON TIDE AXIS 8, !/j/ O
Mvic o Q
gM_gMC- _
g, (7

Figure 2. Tidal accelerations acting at the pendulum frequency (the vector mod-
ules have been exagerated for clarity).

The main tidal accelerations experienced during the Earth
rotation are indeed very slightly modified along the way by the
fact that the pendulum oscillation superimposes the extremely
small swing motion to the rapidly changing Moon-pendulum
distance. Let the Moon-pendulum distance increase rapidly due
to the Earth rotation entraining the laboratory away from the
Moon and/or to the Moon orbit gaining altitude after its perigee.
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The average acceleration g, decreases in a "smooth" fashion

while the instantaneous bob acceleration ,, decreases more

rapidly when the swing has a component away from the Moon
and less rapidly when the swing is toward the Moon. This phe-
nomenon amounts to another tidal contribution exactly in phase
with the pendulum swing along each axis (cosine terms in Equa-
tion 2). It could be measured, if large enough, in the lab coordi-
nates. Concerning the possibility of ellipse generation by the tidal
tilting action, it is clear that the tilt tidal frequency is far too low
to induce parametric amplification of b and, moreover, it is not
commensurate with the pendulum period. So, the answer is no.
Allais has properly recognized those situations on page 127
of his book, [5] where he correctly neglects his term
"(gradU; — grad;U,) = déviation de la verticale" [(Qys- Oye) of

Equation (5) above], which is now known to induce neither
pendulum precession nor ellipse formation in the lab coordinates.
He retains only his term "(grad U, —gradU;)" [(Qy - Ous) ©f
Equation (5) above].

Admittedly, he made an estimation of this term without con-
sidering the instantaneous rapid change in the Earth-Moon dis-
tance (from one to a few kilometers per pendulum period). The
present author has addressed this problem in an unpublished
paper. It turns out that for uniform and rectilinear relative Moon-
pendulum motion, the result would be identical with the situa-
tion at rest, since over a finite number of swing periods, the aver-
age of the instantaneous positions of the bob and the average po-
sition of the ellipse centres coincide. On the other hand, at the ex-
treme situations of relative acceleration, namely with the Moon
near its perigee or apogee and with the laboratory at the latitude
of a subsolar or sublunar eclipse point, the means of bob posi-
tions and ellipse centres no longer coincide. That non inertial
tidal effect is at most of nearly the same magnitude of the linear
one, mainly canceling it in the receeding lab extreme or doubling
it in the other extreme. To find out how the pendulum motion
would be affected in the non accelerated case, let us assume the
simpler situation of fixed Moon-pendulum distance and extremal
lateral accelerations (polar experiment with equatorial eclipse).
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From Equations (2) and Figure 2, one finds F, =0; F,=0;

Fac/ M= (G max = Guc) O (62)

Foe/ M= (Gt max ~ Yuc JSINY (6b)

Equation (3) states that there is no precession without the
presence of an ellipse. F,., which is the tranverse component

when the bob is at the end of the a-axis, generates an ellipse when
there is none or amplifies an existing positive one. At the same
bob position, the velocity along the b-axis is maximal if there is an
existing ellipse and F__ is tranverse to that velocity, which creates

a precession of that ellipse.

Therefore, this submicroscopic tidal effect at the lab scale (or
swing scale) will theoretically create no precession directly but
the onset of an ellipse if there is none. Once there is an ellipse, a
precession speed will grow up proportional to the b-axis.

For the other extreme situation of an equatorial experiment
with Sun and Moon at zenith, there is no perturbing force in the
orbit plane. Classical mechanics can only affect the period.

In short, Allais estimate is confirmed as to the magnitude of
his tidal accelerations, namely as being 8 orders of magnitude be-
low the values of F,, /m that would account for the observa-

tions (4= a,b; v=¢,s) .

Of course, this last analysis may look very academical since
this submicroscopic tidal effect originating from the Moon or any
other celestial body can certainly not be measured by today's
technology. But the situation may be different if large perturbing
masses lie very close to the pendulum, like a concrete column or
obese observers... In principle, an asymmetrical mass distribu-
tion around the pendulum leads to an anisotropy of the gravita-
tional field potential well in which the pendulum evolves. For in-
stance, suspension anisotropy can be analysed in terms of a very
weak saddle-like field at point C, superimposed to the ideal
spherical well. After all, Cavendish's torsional balance works on
the principle of a saddle-like gravitational field. The question
arises whether such a rotating saddle-like field originating from
celestial bodies (space anisotropy) and from Earth rotation is suf-
ficient to explain the tendency of the pendulum azimuth toward
the low-energy axis. It seems that classical mechanics fails to an-
swer the question so far.
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6 The spin degree of freedom

In accelerated reference systems, nonlinear phenomena real-
ize a coupling between otherwise independant df. The rigid body
ballborne physical pendulum may be considered with 5 df, if the
vertical motion of the suspension plane is neglected :

* 2 high-energy df of oscillation about the instantaneous
suspension contact point,

* 1 medium-energy df of spin, with essentially no restoring
torque, about a line through the moving contact point and
the centre of mass,

* 2 low-energy df of horizontal translation of the average
position, over a integer number of periods, of the contact
point on the suspension plane.

On the other hand, one may find for the standard Foucault pen-
dulum as many of 12 df:

* the 2 usual high-energy angular oscillation df about a
slowly moving point in space;

* 4 medium-energy df : 1 spin with restoring torque about
the wire centre-line; 2 transient orthogonal wobbling mo-
tions of the bob about the insertion point of the wire near
its upper surface; 1 transient longitudinal wire vibration
mode;

* 6 low-energy df: 1 long-term low-energy df being the pen-
dulum length affected by temperature, and affecting the
period; 3 long-term low-energy df of horizontal and
vertical oscillation of the suspension point; 2 transient
transversal vibration modes of the wire.

It is interesting to note that, once the initial bob wobbling
and wire vibrations have died out, the bob-wire unit seems to act
as a rigid body, at least for a time scale larger than the wobble
natural frequency. The perturbing effect of the spin can be best
visualized at the beginning of a swing cycle when the swing an-
gular momentum is zero. Let us assume then that the pendulum
has the spin velocity @ . Momentarily, the spin momentum consti-
tutes by itself the total angular momentum of the pendulum.

In Figure 3a, the gravitational torque imglg, =dL,/dt
tends to bring the vector ¢ parrallel to the vertical axis. How-

ever, the Z-component of the angular momentum must stay con-
stant. Indeed, ¢ and ¢ do not appear explicitly in the Lagran-
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gian for an isotropic pendulum with no spin restoring torque. For
such ignorable variables, the vertical components of angular mo-
mentum constitute constants of the motion. [7] Even with a small
restoring torque —D¢@ or with suspention anisotropy being a
very weak function of the azimuth ¢, ¢ and ¢ are practically
constant over one period.

(b)

Figure 3. Perturbation originating from the spin. The horizontal scale has been
exagerated for clarity.

Consequently, the allowable motion at the start is in an hori-
zontal plane instead of downwards as commanded by gravity.
The support will therefore provide a reaction torque along the
vertical axis corresponding to L , and ¢ in Figure 3a. The verti-

cal momentum component associated with ¢ is
L, =-L,cos6+L, ,
Ly = 1,¥ measures the vertical component of the orbital angu-

lar momentum associated with an elliptical orbit. It appears in
Figure 3b as the height, in momentum units, of the hodograph of
L above (or below, as here) the suspension point S.

L, =*L@)sinf==L(E,.,) B, ., =maab, (signofb).

The bob ,then, starts an horizontal motion towards the nega-
tive X, thus initiating an elliptical orbit. In the above example,
o2t

5%,

17/ max

|
g0-¢p-24=

| ¢=-400" st )
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In fact, the rather large value of £ takes the form of a short
side-kick impulse at the begining of the cycle, so that the ellipse
remains at first quite narrow. For after a time dt of a few millisec-
onds, the increment dL, become larger than the spin momen-
tum and overrides it, starting to bring the bob down. From then
on, it is the spin that becomes the peturbing agent for the princi-
pal angular momentum L =L, +L , +L,.

Since L =r; XV must at all times be perpendicular to the ra-
dius vector r, and to the velocity V of the bob along the right-

handed orbit of Figure 3, it points slightly below the horizontal
plane (dotted ellipse) containing the suspension point as the
momentum origin. In practice, ,,, being small, the hodograph

of L lies very close to that plane. Moreover, the part of L, which

lies above the origin represents the perturbation due to the spin,
namely a precession of the orbit at the rate

Y, =-p1,/1, s ®)

£ » -2

+2¢ -
/
# ;
/ d /
7
= s
% ¥ SHACKET PLANE 7
4

OSC(LLATION PLANE

4» \FoucAuLT EFFECT P
=0 5™ g0 34 e 18

MINOR AXIS OF ELLIPSE

16" 0 18" .0 8™

@ (b) ©

Figure 4. Monthly (a) and semi-monthly (b and c) averages of precession angles,
spin angles and minor axis values within 14 min from start. The angle units are
grads. The Foucault effect is (. =—294 grads (- 264°) per 14 minute run

(- 06510 s). [8] Adapted from Allais' memoir to the NASA. [9]

7 A new interpretation of Allais' results

For the ballborne pendulum with no restoring torque, Equa-
tion (8) should be reversible, so that the onset of a precession
should generate a corresonponding spin. This can be seen in Al-
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lais's Graph IV of its memoir for the NASA, [9] reproduced here
in Figure 4. Allais' so-called "gyrostaticity coefficient"
y=1, / lg = 146,ax / l,. So, at the start of Allais’ experiment,

l, / I_w =y/6,.,= 0325, making the slope of the spin angle

("bracket plane" in Figure 4) 3,08 times steeper than the negative
of the Foucault slope. The tangent lines added on Figure 4 illus-
trate the very good agreement with the above theory.

When spin kinetic energy or minor axis kinetic energy are
growing, the energy must come either from a separate excitation
or from a coupling between degrees of fredom. Combining Equa-
tions (7) and (8), one has

¢ = C¢z//l//p + C¢£€ (9)
-308 .

Representing as in Figure 3b the momentum space with an
origin at S, it can be seen that the precession and ellipse growing
contributions from the spin are separated by the origin level: ccw
precession and ccw elliptical increments belong to the positive
(above S) half of momentum space, and vice-versa. The coupling
involved in Equation (9) obviously comes from the motion con-
straint that the vertical component of angular momentum must
remain constant if ¢ and ¢ are ignorable variables. Although
the Airy precession speed, [10] not shown in Figure 3, is usually
too small to be illustrated for a long Foucault pendulum, it is far
from negligible in Allais' paraconical pendulum, where [? is O(1)
m?. Equation (9) should then be re-written:

@ =Cpy (e +4,) +CuE (10)
with ¥, = (3/8)arb/I?. (11)

It is interesting to note that, in accordance with Equation (10)

From Equations (7) and (8), C,, =Cj, =

£

where ¢, <0, the maximum growth rate of minor axis coincides

with a minimal slope of the spin curve in Figure 4.

Allais' data on swing amplitude are not precise enough to
enable an assessment of energy transfer from that df to the other
ones. However, it is found that the only precession contribution
other than Foucault precession (circular anisotropy characterized
by non degenerate circular eigenmodes) is Airy precession, [11]
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and that the external influence from any source takes the form of
linear (suspension or space) anisotropy characterized by non de-
generate linear eigenmodes with different periods for swing di-
rections at 90° from one another. Allais states indeed in his equa-
tions, [11] that the precession angles that he observes outside the
Foucault effect are solely explained by the Airy effect on the ellip-
ses generated from suspension and/or space anisotropy.
However, from the minor axis value of Figure 4 after 14 min-

utes (£ =0), Equation (11) gives ¢, = 11107*s"* =-20y; , giv-
ing, after 14 min, 5,4 grads of Airy precession. But from the ex-
perimental slope of the precession angles at that time,
Yoo =—0 , allowing for other precession contributions.

Roughly 4 grads of Airy effect are missing.

There should also be an "Airy-like" contributionsamg from the
asymmetry of the ellipsoid of inertia, whose axtay svithin a

few degrees of the swing azimuth. From Allais’ as\etry data,
[12] the disk-shaped vertical bob lies indeed piame close to the
major-axis azimuth. The resulting longer swing périn the ma-
jor axis direction should then enhance the Airgefff contrary to
what is observed in Figure 4. The missing posifiug-like pre-
cession speed that is due to anisotropy axes vanesomewhat
bound to the swing azimuth, is obviously transfé@a negative
spin contribution 3 times as large which is sutitddrom the
Foucault-induced spin (9,0 grads after 14 min). ifssing 6,3
spin grads can therefore account for +2,15 gragisesfession,
which is rather close to the missing 2,5 grads io§ Affect alone.
Allais seems to affect space anisotropy solelyni@nges in minor
axis. There might also be a direct precession efflbaech does not
explicitely show up in building ellipses, and whictay be
masked by the buffering behavior of the spin dfafflwould be
consistent with eclipse effects on torsion pendld] [14]

8 Spin characteristics of the Foucault pendulum

Because of the spin restoring torque of the Foucault pendu-
lum, a steady spin-inducing perturbation cannot build up spin
angle indefinitely. Its action in a given direction is limited to a
fraction of the spin period. Hence, the coupling constants be-
tween spin angle, minor axis swing amplitude and precession
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angle must be much smaller than with the short and rigid ball-
borne pendulum. Thanks though to the high precision video re-
cording of pendulum motion achieved in the 2001 Chicoutimi
experiment, [15] the first evidence of spin-orbit coupling with a
long Foucault pendulum has been demonstrated by the author.
The observations involve the simultaneous imaging of an array of
luminous spots on an alidade fixed to the laboratory floor at the
same height as the bob top surface, and a similar array of lumi-
nous spots attached to the top surface of the bob itself. Strictly
speaking, this system records the relative motion of the insertion
point of the flexible wire into the bob top surface. Through the
use of deflecting mirrors, the camera, no matter its size, has a
bird's view from a point ~2 cm beside the suspension point, thus
measuring essentially parallax free angles from the vertical. In
practice, once the initial wobbling and string modes have died
out, it is assumed that the motion of the centre of mass is re-
corded. Moreover, since the deflecting mirror is solidary with the
suspension rig, suspension motion appears as a relative alidade
motion in the image. In the 2009 Gifu experiment (Japan), alidade
pseudo-oscillations in phase with the pendulum could demon-
strate suspension-beam flexion and torsion as small as 107 rad for
a swing amplitude of 0,015 rad. That ended up in measurable
pendulum anisotropy in the form of orthogonal swing periods
differing by 3 parts in 10-°. Similarly, in the above mentioned 12-
hour Chicoutimi experiment, the direct lunisolar tide effect could
at most be seen as a complete conical sweep of the vertical along
a 0,4 mme-radius circle on the floor. [15] Comparing it with the
expected value in Section 2, this may include a small strain of the
hosting cathedral as the Sun shines around the stone walls.

That particular experiment was started with a one-turn spin
angle in order to see eventual interactions between spin and pre-
cession. In aftermath, the author argues that the Longden corked
wire anisotropy can be eliminated this way, [16] since the even-
tual anisotropy axes actually swept an angle range between mand
Y2 for the totality of the experiment (spin time constant = 16 h).

Incidentally, beside spin-orbit coupling and a Foucault effect
of Qp =-1125 °/h , the precession angle of that 17,4 m long
pendulum showed ocsillations components in phase with the 3
most important harmonics of the tide in the nearby Saguenay
River, albeit with different amplitude ratios (as Allais also found
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out). Needless to say, both the direct lunisolar influence and the
gravitational influence of the alternating water mass in the river
fall short of explaining the measured accelerations by 8 and 4 or-
ders of magnitude respectively. The data fit the precession equa-
tion below to *15%, except for the last spin-orbit term: +30%.
N.B.: The precession speed oscillation due to the 360° spin had a
non negligible amplitude : ¢, =w,A, =27 °/h!
W=Qct+Acoset +9)
+ A cos,t +9,) + A cos it + J) A, : anisotropy term
+ A, cosRQ.t+9,) + A, cosyt +9,);
w =[-360°/32h|t + 168°cog 277t/ 248h) + 2,2
+105°cod (21t/12,4h) + &, + 11|+ 038 cod 277t/ 41h) + &, — %]
+ 035°coq (2rt/16h) + 49] + 003 cod (277t/212s) + 7

Semi-minor axis

N

0 9
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B o B N W A

|

36 45

ey ae?’

Figure 5. Effect of an initial spin on a 7,2-meter long Foucault pendulum in Ta-
hiti. The bob design allowed for rapid spin damping over a few swing cycles.

A recent experiment in Tahiti (2010) is now in preliminary
processing using a new proprietary pendulum analysis software.
Different parameters are obtained at every half cycle with a preci-
sion unattained before. That experiment could be run with no
spin by feeding the wire through the bob in a fixed capillary and
then clamping it underneath. The wire torsion was hindered by
friction inside of the capillary. Figure 5 shows the correspondence
between minor axis and precession speed after an undesired 10°
initial spin. The 7,2-meter pendulum had a spin period of 8,5
swing periods. A +3-mm b-axis yields a ccw precession speed
increment of 0,8 °/h, which fades out within ~30 swing cycles. It
reaches up to 20% of the ccw, 4,53 °/h, Foucault effect in Papeete.
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9 Conclusion

It can be seen from the above that the spin df plays an essen-
tial role in the short ballborne pendulum. It may yield a buffering
action that will mask eventual direct precession contributions
arising from an external pendulum perturbation. In that sense,
Allais might have erroneously reserved exclusively minor axis
changes to all the external influences, explaining his precession
observations merely by the subsequent Airy effect. The long Fou-
cault pendula show unexplained precession contributions orders
of magnitude larger than the practically negligible Airy preces-
sion. Direct precession reveals the existence of circular anisotropy
in the surrounding field, which appears consistent with many ob-
servations on torsion pendula.

The author acknowledges a significant instrumental facilita-
tion of this fundamental research by Rio Tinto Alcan.
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