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Characterizing the Damping and the Suspension Anisotropy
of a Computerized Foucault Pendulum
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555, boul. de I'Université, Saguenay, Québec, CaraitH 2B1
rverreau@ugac.ca; christian@robotomation.ca

Abstract - All unsustained physical pendula undergo varioyges of damping processes
which make them irreversible quasi-periodical desicTheir recent use as instruments for
detecting cosmological micro-anomalies requires dagermination of system anisotropy with
the utmost precision, notwithstanding an inhereatiance due to the strictly aperiodical
behavior. An image processing algorithm has beeeldped for analyzing a camera monitored
Foucault pendulum. This greatly improves precisiothe determination of swinging azimuth,
precession angle, swinging amplitude and swingiegod. A novel, very simple damping
formula has been derived based on sequential athsiEconcomitant, viscous and aerodynamic
damping processes within the oscillation cycle hitgth accuracy enables the authors to isolate a
faint, undamped residual amplitude wave due toggnekchange between the minor and major
axes of the elliptical orbit. To the authors’ knedge, the very weak anisotropy of a long
Foucault pendulum has also been for the first taxgerimentally characterized in terms of the
zero-amplitude swinging period plus a conservatraee in period as well as in amplitude.

Keywords: Physical pendulum, Foucault pendulum, viscous dagipaerodynamic drag, anisotropy,
image processing.

1. Introduction

The simple pendulum is idealized in practically sktbooks as a harmonic oscillator obeying
conservative Hamilton’s mechanics. However, the empresence of some inevitable damping in a
physical pendulum prevents the trajectory in plssee from being closed and periodical. To addhess
damping phenomenon with classical conservativeugmation methods, the phase space trajectory is
made artificially closed by making the energy loger one half-cycle stored in some imaginary paaént
reservoir, and then given back to the pendulum iima reversal process for the next half-cycle sthu
preserving the Hamiltonian descriptighlinorsky, 1962) The Foucault pendulum has been thoroughly
investigated by Nobel Priz&éamerlingh Onnes (187 his dissertation, where \Wwas idealizeds a
two-degrees-of-freedom harmonic oscillatéamerlingh Onnesvas the first to apply the perturbation
methods of celestial mechanics to the sphericaldgem. His main contribution was to show,
theoretically and experimentally, that the nattealdency of the spherical pendulum to generatgtiebil
orbits within a few minutes of operation was laygglie to suspension anisotropy. Some 200 yeans afte
Foucault, the French engineer and Nobel Prize Maukilais (1959, 1997, 1999 and Web-1) designed
the so-called paraconical pendulum with rollingl lsispension. Allais characterized the amount and
orientation of pendulum anisotropy by the initiate of increase of the ellipse minor axis and leyrtte
of Airy precession over 14 minutes. Beside suspenahisotropy, he detected an unidentified, vagiabl
source of anisotropy which he attributed to spaagge it was correlated with the motion of partacul
celestial bodies in the solar system.



Much concern about the Foucault pendulum as atffaienstrument has been revived in the last 50
years. See Verreault (2013) for a short review. elm@v, researchers are facing several drawbacksodue
the irreversible, non-reproducible nature of the@eziments. Namely, physical pendula show a non-
negligible 3° degree of freedom (Verreault, 2011) in the formadbrsion about the suspension wire or
rod axis (some sort of macroscopic spin degreeegfdom), which takes part in the repartition ofrggpe
and momentum. Moreover, every physical pendulunt witvinging amplitudes of a few centimetres
undergoes prevalent aerodynamic damping with differpower loss parameters for each degree of
freedom. Finally, nonlinear coupling can also catmeservative energy transfer between the degifees o
freedom.

In view of the recent interest in the spherical pgom as a cosmological anisotropy measuring
instrument, it is the purpose of this paper to show, by using appropriate image processing algst
and irrespectively of the various dissipative peses, 1° a conservative energy transfer between the
pendulum proper modes can be experimentally demadadt 2° the zero-amplitude swinging period can
be precisely determined for each azimuth and usetdracterize the pendulum anisotropy.

2. Theoretical background

2.1 Theperiod of oscillation

While the scientific literature generally considéh® Foucault pendulum as a two-dimensional
harmonic oscillator, it must be emphasized thas iirtually impossible to set up a perfectly isqtic
physical pendulum. Fundamentally, suspension anisptarises as a consequence of a varying effective
length of the pendulum as a function of swingingragh. Therefore, two extreme values of swinging
period can be measured for two orthogonal direstioamely the fast axis (minimal period) and tlsvsl
axis (maximal period). The work of Kamerlingh Onr{&879) on suspension anisotropy established that,
in absence of anharmonicity, the initial rate afrease of the minor axis, shortly after the penuuhas
been launched in a rectilinear oscillation, cammeeasure of the amount of suspension anisotropy.

£ = Asin 2y, D
where

€ = b/a , the ellipse axis ratio;

Ais the measure of the amount of anisotropy;

U, is the initial azimuth of the rectilinear osciltat relative to fast axis.

Allais (1959) utilized, in his mid-fifties experimes, an anisotropic Foucault pendulum by design,
partly due to a disk shaped bob lying in a vertahe, partly due to a suspension rod terminateéiea
top by a C-shaped stirrup and partly due to theadripic elastic constants of a steel beam, near th
ceiling, supporting the suspension rig. Moreovés,dhort pendulum (~1 m) with large amplitudes {~0,
rad) was strongly nonlinear, so that the Airy pesten rate which accompanied the elliptical orbitds
up reached typically twice the negative of the Ralicrate after 14 minutes. As a matter of factaial
also used the Airy precession rate as the mea$sendulum anisotropy, since it included the ingédaf
Equation 1 over 14 minutes (Allais 1997).

For a long Foucault pendulum at mid-latitudes vethplitudes in the range 0,001- 0,015 rad, Airy
precession is generally negligible, while Foucau#cession is dominant. However, the effects oheve
very little suspension anisotropy are not negligilfl the experiment is to be conducted over several
hours. An efficient but not so accurate method etetmining suspension anisotropy may consist in a
series of direct measurements of the swinging gérifor a set of evenly spaced swinging azimuths over
a small number of oscillations (typically 100 cygleBy fitting a sine wave to the data, the amaafnt
anisotropy is obtained as

Aw = Wpmax — Omin = — (Tnax — Tmin)/TO2 ) w =2m/T) (2

In the same process, the azimuths of the fastlamdaxes can be determined.

Since 2001, the first author has conducted sev@atault pendulum runs lasting from 12 to 36
hours. Thanks to Foucault precession, a large rahgeinging azimuths is then visited as a funcidn



time. It becomes possible in aftermath to extraet period time series. After eliminating a transien
contribution T, due to the anharmonic influence of finite swingiagplitudes, the remaining “zero
amplitude” series should fit a Fourier series vdtfundamental component at one half (nofgdof the
Foucault precession period, since each swinginguhi is visited twice during a complete revolutian
precession. As shown by Kamerlingh Onnes (187%pesusion anisotropy is responsible for its own
precession contribution, even in the absence of Affect. Consequently, the precession rate isdy n
means constant, which should show up as a significarmonic content in the above time series. The
swinging period should then be expressed as

T() =T, +Tye% +>'T, cos[@ » 2

k=1 F

j . (3a)

However, if the independent variable is the azimaftthe major axis instead of the time, the
swinging periodT (¢) should show a similar behaviour agt) , but only with the fundamental

Fourier component, since the precession lead apahdalonger show up. The transient period
increment should essentially be the same but ldgait decrement will be parametrized by an
azimuth constant. Hence,

Tw) =T, +Tye%5 +T, cos(q +2T—mj . (3b)

F

2.2 Thedamping

In Equation 3, the transient term is related todteadily decreasing major axis due to aerodynamic
and viscous damping. Considering the simultanecesage dissipative work done against the viscous
forces and the aerodynamic forces during one redilation, Nelson (1986) comes up with the
differential equation

a=-ga-pa’,
which, upon integration , gives
—at

aae
[ pay(1-¢7) +a]
However that expression proved erroneous by mane 1#90% for runs exceeding 12 hours. Taking
into account the constantly varying speed of the within a half-cycle, a small fraction of the halfcle
has Reynolds numbers between 0 and 1000 with rniglgligerodynamic drag, while the remaining
fraction has Reynolds numbers well above 1000 ¢glpi in the 3000-10000 range) with negligible
viscous damping. Then, the linearly damped ampditatl the end of the slow cycle fraction can be
considered as the starting amplitude at the beginrof the following rapid fraction. Applying
perturbation methods (Minorsky 1962) to this pnohej a much simpler novel expression is obtained,
which has been found to fit the data within theezkpental errors of amplitude (typically 10 to 1t
for runs reaching up to 18 hours:

a=

4)

—at

a=_ € _ 8
(1+ ,Baoe'mt) (em +,8a0t) ’

(5)

where
1/a is the viscous time constant, and

1/ Ba, is some kind of aerodynamic time constant.



2.3 Theintermode energy exchange

It is expected that the vibration energy alongrthieor axis, as anisotropy generates ellipses,
is extracted from the major axis. Since suspenaisotropy effects involve the half-Foucault
precession periodi-, a Fourier series similar to the one of EquatiarsBould be present in the
amplitude of the major axis as well, although,hte authors’ knowledge, such fluctuations in the
amplitude curve have never been reported in moHeutault pendulum experiments. At most,
with the excessively anisotropic pendulum used aynkrlingh Onnes (1879) in his dissertation,
the fatter ellipses drawn in his figures (see Feglibelow) show evident reductions of the major
axis. It is not clear at first glance whether d&odv that oscillatory contribution to the major axis
amplitude is affected by dissipation since KamghirOnnes did not consider damping. The
different models to be tested may look as follows:

a) multiplificative dissipative anisotropy effects:

0=z Saa 7 ©

b) additive dissipative anisotropy effects:

a(t) =( )+Z tcos( Z_zktj ; @)

c) additive conservative anisotropy effects:
_ a, - 27kt
a(t) =7—=——1) a co{@ + j . (8)
(e™ + ) kZ;, T,

Which one is the correct model should be decideduoye fitting to the experimental data.

Figure 1. Reproduction of Figure 6 from Kamerlinghnes’ dissertation. From energy conservation piec
the fatter the ellipses (v.g. Nos 5 and 6), theteihhahe major axis as compared to the rectilimsaillation (No 8).



2.4  Theanharmonicity

For an isotropic pendulum, the finite amplitudeostillation is responsible for a period increment
according to the expression

T(t)=T0,/1+i(;[)=TO 1+ 2 _ b, <) )
8l 16°(e" + pat)
where

T, is the zero-amplitude peri;
| is the pendulum leng.
For the first few hours, an approximation to trensient term can be given by

2

T(t):T{u % J = T, +Te 2@ h) {< la< 1Ba, (10)

1612 (1+ 2@ + Ba )t + ..)
where, by comparing with Equation 3a,
Ta’

T, =% (11)
16
1y =2(a+Ba,). (12)

3. Experimental setup

The data used for this research originates frorB emFoucault pendulum set up in Gifu, Japan, for
the solar eclipse of July 22, 2009 (Web-2). Theeeixpental site consisted of a white concrete bunker
15m x 13m x 8.5m on the University campus. The saosjpn rig was clamped to a 19mm U-bolt
emerging from a ceiling concrete beam. A Watec B@2video camera was horizontally fixed to the
suspension rig so as to get a parallax-free véniesv of the pendulum bob, though a pair of misrat
135° to each other. The 18-hour continuous recgrdin30 frames per second fills up a 1.5 terabgtd h
disk. The positions of the bob and of the referealidade are made visible through a set of retro-
reflecting markers which are illuminated from a #mpotlight located near the suspension rig.

In order to achieve the maximum available precidiom the data processing, proprietary software
has been developed. In a pre-processing phassirg lof the coordinates of the retro-reflectingrkeas
is made. Then a quarter of ellipse is fitted tohequoarter of a cycle, in order to determine theamand
minor axes twice per cycle. Moreover, two perioktekations per cycle are made by comparing thegime
of passage at the end of the major and minor agbselen consecutive cycles. To make those period
measurements comparable with those of the litezatuhich typically are averages over ~100 cycles, a
running mean has been applied over 85 cycles trougthe data. In this manner, any unknown effects
originating from accidental torsional spinning neatiof the bob with an observed spin period of 8lgw
cycles are eliminated.

From the theory standpoint (Kamerling Onnes, 19%9), different longwise and crosswise elastic
properties of the rig and beam assembly generatalistinct periods for swinging directions parakeld
perpendicular to the beam. Hence, linear anisotmmpyifests itself as a tendency for the rectilinear
oscillations in the intermediate quadrants to degae into elliptical orbits. A complete cycle dadripd
values should thus be observed over a 180° azirsp#im. Since that azimuth interval is normally
scanned, due to the Foucault precession, in orfeofighe Foucault period, it is expected that the
anisotropy features shall be expressed as a Faaigrs with the half-Foucault perioti:(= 20.68 h) for
the fundamental component.

Among the aims of this research, while all sortexternal perturbations, particularly during solar
eclipses, also tend to induce elliptical orbitsjsitimportant to precisely characterize the amanint



ellipticity originating from suspension anisotrogyor this work, only the evolutions of the swinging
amplitude and of the swinging period over the 18+hduration of the experiment have been considered.

4. Results and discussion

Figure 2 shows the evolution of the amplitude. Blotual graph consists of 19 803 experimental
points which are measured with an accuracy of 15 mma. This provides enough information to
determine not only the viscous and aerodynamic d@gmparameters, but also a 3-harmonic Fourier
series at the half-Foucault fundamental periodesmonding of the energy exchange between the major
and minor axes when the latter grows up due toenspn anisotropy. It can be verified that the
maximum of the minor axis of Figure 2 coincideshaihe minimum of the fundamental wave of the
major axis. Here, it is worth noting that the hummaount of redundant information available in video
imagery allows unprecedented precision in the detetion of the pendulum characteristics of Tahle 1
In particular, the novel damping law as per EqueBads exactly verified within experimental errdos
the complete duration of the 18-hour experimengaRaing the anisotropy models of Equations 6 to 8,
attempts to fit any dissipative model lead to irddosive results. On the contrary, the conservatieelel
yielded the consistent results of Table 1 withia éxperimental errors.

In Figure 3, the three synchronized waves chaiaatgrthe anisotropy effects on the major axis, the
minor axis and the swinging period are quite whlbktrated.

160 Table 1. Parameters pertaining to a fit of Equation

5 to the amplitude data of Figure 1.

140

120
€ Parameter Value Standard
£ 100 error
% 50 ag (mm) | 154.356 0.003
8, 1/ (h) 6.6517 0.0006
£ 60
g 1/Baq (h) 10.065 0.004
@ 40 a (mm) | 1.307 0.002
20 V1 (rad) 1.392 0.002
0 a; (mm) | 0.3049 0.0006
o 2 4 6 8 10 12 14 16 18
Elapsed time t (h) @2 (rad) 6.011 0.002
Fig. 2. Swinging amplitude as a function of timeneT a3 (mm) 0.0386 0.0003
available information  allows the significant ®3 (rad) 4.809 0.006
determination, in addition to the viscous time ¢ans el
a™and the aerodynamic “time constafyfa )™, of a Residuals (mm) 0.015

3-harmonics periodical part describing the condéerea
energy exchange between the minor and major axes
according to the anisotropy tendency to generaténar

axis wave at half the Foucault precession periathealy
20.68 h in Gifu.
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FIGURE 3. (a) Evolution of the Hamiltonian, energy consegvamplitude wave of the semi-major axis, unafdcby the
damping processes, due to the energy taken byetherminor axis. (b) Evolution of the ellipse semiror axis as a consequence
of the azimuth dependence of the period due toenisspn anisotropy. (c) Evolution of the zero-amyglé Hamiltonian swinging
period, unaffected by the damping processes, éomaplete Foucault precession period of 41.36 h.
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Table 2. Parameters pertaining to a fit of EquaBon
to the swinging period data of Figure 4.
5.6887
g SR Parameter Value Standard
—t error
g 56087 ¥ To (s) | 5.6686215| 0.0000004
F; o T, (s) | 0.0001198| 0.000001[L
2 y (h) 1.72 0.05
& - T; (s) | 0.0000658| 0.0000002
¢4 (rad) 4.03 0.01
568851 B T, (s) | 0.0000103| 0.0000008
s cont L L [0 (rad) 2.02 0.02
02 4 BEI AP TR T, (s) | 0.0000017| 0.0000001
apsed time (h)
Qs (rad) 4.22 0.08
Figure 4. Evolution of the swinging period as a Residuals _ (s) 0.000012

function of time.

Figure 4 and Table 2 illustrate the adjustment gdid&ion 3a to the swinging period time series. As
expected, the important harmonic content could bécipated, since precession acceleration or
deceleration would cause leads or delays in theanhswhere the major axis azimuth crosses the
anisotropy fast and slow axes. Another test ofaieve anisotropy theory consists in the verifiqatd
the link (Equations 11 and 12) between the trangieriod pattern and the anharmonicity paramegeys,
shown in Table 3.

Table 3. Experimental verification of anharmonigigrameters with Equations 11 and 12.

Parameter | Theoretical estimate| Experimental value
T, (Us) 131 12C
1y (hh 0.5¢ 0.E0




Figure 5 shows the experimental results for thelutiom the swinging period as a function of
swinging azimuth. Again, the 19 803 data pointsasho average residual of 14 us. Therefore, only two
contributions to the mean period are neatly sepdrat) transient addition to the ideal zero-amgétu
period, with a damping azimuth constant of 17.)°alsinusoidal zero-amplitude period which verifies
exactly the theory of anisotropy according to EaqumaBb. In further processing of the pendulum dta,
is then possible to exactly predict the amount r@fcpssion rate attributed to the linear anisotropy
suspension, so that any amount there upon will kabe attributed to external perturbations.

Linear anisotropy of suspension for Gifu pendulum
5,688750 —

Anharmonicity
transient ..

5,688650|
m1

t/eigenaxis 111.5

5,688600 y = m + m2%exp(-(x + 55)im3)
+ m4*cos(6.2832*(x - m5)/180)
Value Error
ml (s)| 5,6886333 | 0,00000
m2 (s)| 0,0001196 | 0,0000007
m3 (°) 171 02
mé4 (s)| 0,0000652 | 0,0000002 | = |-
m5 (°) 215 01
Residuals (s)| 0,000014

\ Sinusoidal

anisotropy
S,BSBSSOL\

Initial
zero-amplitude
5688500, period

Swinging period (s)

Slow eigenaxis 21.5

5,688450L

-3‘0 I I 0 I I 3;) ‘ I 8‘0 ‘ ‘ 96 I I 12I0
Azimuth cw from North (°)
Fig. 5. Linear anisotropy of suspension for theu@Giendulum, expressed as a pure sine wave forwiregisg

period in terms of the swinging azimuth. The swimgperiod includes a transient contribution duartbarmonicity
and proportional to the square of the swinging émungbé.

5. Conclusion

The combined use of video imagery and proprietafyngre involving piecewise curve fitting over
terabytes of data stream has allowed unprecedgmmetision in the determination of the Foucault
pendulum parameters. To the authors’ knowledge wibak suspension anisotropy of a long Foucault
pendulum has been experimentally determined forfiteetime in terms of period measurements with
sub-microsecond precision. Moreover, a novel dagpireory which discriminates between the linear
and quadratic processes within the oscillation eyappears to be the sole description capable of
reproducing the experimental measurements oveBdrodr long experiment.
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