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Abstract - All unsustained physical pendula undergo various types of damping processes 
which make them irreversible quasi-periodical devices. Their recent use as instruments for 
detecting cosmological micro-anomalies requires the determination of system anisotropy with 
the utmost precision, notwithstanding an inherent variance due to the strictly aperiodical 
behavior. An image processing algorithm has been developed for analyzing a camera monitored 
Foucault pendulum. This greatly improves precision in the determination of swinging azimuth, 
precession angle, swinging amplitude and swinging period. A novel, very simple damping 
formula has been derived based on sequential, instead of concomitant, viscous and aerodynamic 
damping processes within the oscillation cycle. Its high accuracy enables the authors to isolate a 
faint, undamped residual amplitude wave due to energy exchange between the minor and major 
axes of the elliptical orbit. To the authors’ knowledge, the very weak anisotropy of a long 
Foucault pendulum has also been for the first time experimentally characterized in terms of the 
zero-amplitude swinging period plus a conservative wave in period as well as in amplitude. 
 
Keywords: Physical pendulum, Foucault pendulum, viscous damping, aerodynamic drag, anisotropy, 
image processing. 
 
 
1. Introduction 

The simple pendulum is idealized in practically all textbooks as a harmonic oscillator obeying 
conservative Hamilton’s mechanics. However, the mere presence of some inevitable damping in a 
physical pendulum prevents the trajectory in phase space from being closed and periodical. To address the 
damping phenomenon with classical conservative perturbation methods, the phase space trajectory is 
made artificially closed by making the energy loss over one half-cycle stored in some imaginary potential 
reservoir, and then given back to the pendulum in a time reversal process for the next half-cycle, thus 
preserving the Hamiltonian description (Minorsky, 1962). The Foucault pendulum has been thoroughly 
investigated by Nobel Prize Kamerlingh Onnes (1879) in his dissertation, where it was idealized as a 
two-degrees-of-freedom harmonic oscillator. Kamerlingh Onnes was the first to apply the perturbation 
methods of celestial mechanics to the spherical pendulum. His main contribution was to show, 
theoretically and experimentally, that the natural tendency of the spherical pendulum to generate elliptical 
orbits within a few minutes of operation was largely due to suspension anisotropy. Some 200 years after 
Foucault, the French engineer and Nobel Prize Maurice Allais (1959, 1997, 1999 and Web-1) designed 
the so-called paraconical pendulum with rolling ball suspension. Allais characterized the amount and 
orientation of pendulum anisotropy by the initial rate of increase of the ellipse minor axis and by the rate 
of Airy precession over 14 minutes. Beside suspension anisotropy, he detected an unidentified, variable 
source of anisotropy which he attributed to space, since it was correlated with the motion of particular 
celestial bodies in the solar system. 
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Much concern about the Foucault pendulum as a scientific instrument has been revived in the last 50 
years. See Verreault (2013) for a short review. However, researchers are facing several drawbacks due to 
the irreversible, non-reproducible nature of the experiments. Namely, physical pendula show a non-
negligible 3rd degree of freedom (Verreault, 2011) in the form of a torsion about the suspension wire or 
rod axis (some sort of macroscopic spin degree of freedom), which takes part in the repartition of energy 
and momentum. Moreover, every physical pendulum with swinging amplitudes of a few centimetres 
undergoes prevalent aerodynamic damping with different power loss parameters for each degree of 
freedom. Finally, nonlinear coupling can also cause conservative energy transfer between the degrees of 
freedom. 

In view of the recent interest in the spherical pendulum as a cosmological anisotropy measuring 
instrument, it is the purpose of this paper to show how, by using appropriate image processing algorithms, 
and irrespectively of the various dissipative processes, 1° a conservative energy transfer between the 
pendulum proper modes can be experimentally demonstrated; 2° the zero-amplitude swinging period can 
be precisely determined for each azimuth and used to characterize the pendulum anisotropy. 

 
2. Theoretical background 

2.1 The period of oscillation 

While the scientific literature generally considers the Foucault pendulum as a two-dimensional 
harmonic oscillator, it must be emphasized that it is virtually impossible to set up a perfectly isotropic 
physical pendulum. Fundamentally, suspension anisotropy arises as a consequence of a varying effective 
length of the pendulum as a function of swinging azimuth. Therefore, two extreme values of swinging 
period can be measured for two orthogonal directions, namely the fast axis (minimal period) and the slow 
axis (maximal period). The work of Kamerlingh Onnes (1879) on suspension anisotropy established that, 
in absence of anharmonicity, the initial rate of increase of the minor axis, shortly after the pendulum has 
been launched in a rectilinear oscillation, can be a measure of the amount of suspension anisotropy.  

 ɛ� = � sin 2ψ
 (1) 
where  
 ɛ = � �⁄  , the ellipse axis ratio; 
A is the measure of the amount of anisotropy; 
ψ
 is the initial azimuth of the rectilinear oscillation relative to fast axis. 
Allais (1959) utilized, in his mid-fifties experiments, an anisotropic Foucault pendulum by design, 

partly due to a disk shaped bob lying in a vertical plane, partly due to a suspension rod terminated at the 
top by a C-shaped stirrup and partly due to the anisotropic elastic constants of a steel beam, near the 
ceiling, supporting the suspension rig. Moreover, his short pendulum (~1 m) with large amplitudes (~0,1 
rad) was strongly nonlinear, so that the Airy precession rate which accompanied the elliptical orbit build-
up reached typically twice the negative of the Foucault rate after 14 minutes. As a matter of fact, Allais 
also used the Airy precession rate as the measure of pendulum anisotropy, since it included the integral of 
Equation 1 over 14 minutes (Allais 1997). 

For a long Foucault pendulum at mid-latitudes with amplitudes in the range 0,001- 0,015 rad, Airy 
precession is generally negligible, while Foucault precession is dominant. However, the effects of even 
very little suspension anisotropy are not negligible if the experiment is to be conducted over several 
hours. An efficient but not so accurate method of determining suspension anisotropy may consist in a 
series of direct measurements of the swinging period T for a set of evenly spaced swinging azimuths over 
a small number of oscillations (typically 100 cycles). By fitting a sine wave to the data, the amount of 
anisotropy is obtained as 

 ∆� = ���� − ���� = − ����� − ����� �

�⁄  ,       (� = 2� ��⁄  (2) 

In the same process, the azimuths of the fast and slow axes can be determined. 
Since 2001, the first author has conducted several Foucault pendulum runs lasting from 12 to 36 

hours. Thanks to Foucault precession, a large range of swinging azimuths is then visited as a function of 
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time. It becomes possible in aftermath to extract the period time series. After eliminating a transient 
contribution Tγ due to the anharmonic influence of finite swinging amplitudes, the remaining “zero 
amplitude” series should fit a Fourier series with a fundamental component at one half (noted TF) of the 
Foucault precession period, since each swinging azimuth is visited twice during a complete revolution in 
precession. As shown by Kamerlingh Onnes (1879), suspension anisotropy is responsible for its own 
precession contribution, even in the absence of Airy effect. Consequently, the precession rate is by no 
means constant, which should show up as a significant harmonic content in the above time series. The 
swinging period should then be expressed as 

 0
1

2
( ) cos

nt

k k
k F

kt
T t T T e T

T
γ

γ

πφ
−

=

= + + +
 
 
 

∑ . (3a) 

However, if the independent variable is the azimuth of the major axis instead of the time, the 
swinging period ( )T ψ  should show a similar behaviour as ( )T t , but only with the fundamental 
Fourier component, since the precession lead and lag no longer show up. The transient period 
increment should essentially be the same but logarithmic decrement will be parametrized by an 
azimuth constant δ. Hence, 

 0 1 1( )
2

cos
t

F
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t

T
T

δ
γψ πφ−

= + +
 

+ 
 

. (3b) 

2.2 The damping 

In Equation 3, the transient term is related to the steadily decreasing major axis due to aerodynamic 
and viscous damping. Considering the simultaneous average dissipative work done against the viscous 
forces and the aerodynamic forces during one half-oscillation, Nelson (1986) comes up with the 
differential equation  

 
2a a aα β= − −ɺ , 

which, upon integration , gives 

 ( )
0

0 1

t

t

a e
a

a e

α

α

α
β α

−

−
=

− +  
.  (4) 

However that expression proved erroneous by more than 100% for runs exceeding 12 hours. Taking 
into account the constantly varying speed of the bob within a half-cycle, a small fraction of the half-cycle 
has Reynolds numbers between 0 and 1000 with negligible aerodynamic drag, while the remaining 
fraction has Reynolds numbers well above 1000 (typically in the 3000-10000 range) with negligible 
viscous damping. Then, the linearly damped amplitude at the end of the slow cycle fraction can be 
considered as the starting amplitude at the beginning of the following rapid fraction. Applying 
perturbation methods (Minorsky 1962) to this principle, a much simpler novel expression is obtained, 
which has been found to fit the data within the experimental errors of amplitude (typically 10 to 15 µm) 
for runs reaching up to 18 hours: 

 ( ) ( )
0 0

0 01

t

t t

a e a
a

a e t e a t

α

α αβ β

−

−= =
+ +

 , (5)  

where 
  1 �⁄  is the viscous time constant, and 

   1 0aβ�  is some kind of aerodynamic time constant. 
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2.3 The intermode energy exchange 

It is expected that the vibration energy along the minor axis, as anisotropy generates ellipses, 
is extracted from the major axis. Since suspension anisotropy effects involve the half-Foucault 
precession period TF , a Fourier series similar to the one of Equation 3a should be present in the 
amplitude of the major axis as well, although, to the authors’ knowledge, such fluctuations in the 
amplitude curve have never been reported in modern Foucault pendulum experiments. At most, 
with the excessively anisotropic pendulum used by Kamerlingh Onnes (1879) in his dissertation, 
the fatter ellipses drawn in his figures (see Figure 1 below) show evident reductions of the major 
axis.  It is not clear at first glance whether and how that oscillatory contribution to the major axis 
amplitude is affected by dissipation since Kamerlingh Onnes did not consider damping. The 
different models to be tested may look as follows: 

a) multiplificative dissipative anisotropy effects: 

 ( )
0

1

2
( ) cos

n

k k
k F

t
a kt

a t a
Te tα
πφ

β =

  
= +   +   

∑  ; (6) 

b) additive dissipative anisotropy effects: 

 ( )
0

1

2
( ) cos

k

n
k

k
k F

tt
a a kt

a t
Tee t γα
πφ

β =

 
= + + 

+  
∑  ; (7) 

c) additive conservative anisotropy effects: 

 ( )
0

1

2
( ) cos

n

k k
k F

t
a kt

a t a
Te tα
πφ

β =

 
= + + +  

∑  . (8) 

Which one is the correct model should be decided by curve fitting to the experimental data.  
 

 
 

Figure 1. Reproduction of Figure 6 from Kamerlingh Onnes’ dissertation. From energy conservation principle, 
the fatter the ellipses (v.g. Nos 5 and 6), the shorter the major axis as compared to the rectilinear oscillation (No 8). 
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2.4 The anharmonicity 

For an isotropic pendulum, the finite amplitude of oscillation is responsible for a period increment 
according to the expression 

 
( )

2 2

2 2

0

0
0 0 02

( )
( ) 1 1

8 16
        ( )   

t

a t a
T t T T

l l e a t
a l

α β
= + ≈ +

+

 
 
 
 

≪  (9) 

where  

0  is the zero-amplitude periodT ; 

 is the pendulum lengthl . 
For the first few hours, an approximation to the transient term can be given by 
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0

2

2

0
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0 0 0( ) 1

16 1 2( ...
e         ( 1 1 )

)
   a ta
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where, by comparing with Equation 3a, 

 
2

0 0

216
 

T a
T

l
γ ≈ ;  (11) 

 01 2( )aγ α β≈ + .  (12) 

  
3. Experimental setup 

The data used for this research originates from an 8 m Foucault pendulum set up in Gifu, Japan, for 
the solar eclipse of July 22, 2009 (Web-2). The experimental site consisted of a white concrete bunker 
15m x 13m x 8.5m on the University campus. The suspension rig was clamped to a 19mm U-bolt 
emerging from a ceiling concrete beam. A Watec 902-H2 video camera was horizontally fixed to the 
suspension rig so as to get a parallax-free vertical view of the pendulum bob, though a pair of mirrors at 
135° to each other. The 18-hour continuous recording at 30 frames per second fills up a 1.5 terabyte hard 
disk. The positions of the bob and of the reference alidade are made visible through a set of retro-
reflecting markers which are illuminated from a small spotlight located near the suspension rig. 

In order to achieve the maximum available precision from the data processing, proprietary software 
has been developed. In a pre-processing phase, a listing of the coordinates of the retro-reflecting markers 
is made. Then a quarter of ellipse is fitted to each quarter of a cycle, in order to determine the major and 
minor axes twice per cycle. Moreover, two period calculations per cycle are made by comparing the times 
of passage at the end of the major and minor axes between consecutive cycles. To make those period 
measurements comparable with those of the literature, which typically are averages over ~100 cycles, a 
running mean has been applied over 85 cycles trough out the data. In this manner, any unknown effects 
originating from accidental torsional spinning motion of the bob with an observed spin period of 85 swing 
cycles are eliminated. 

From the theory standpoint (Kamerling Onnes, 1979), the different longwise and crosswise elastic 
properties of the rig and beam assembly generate two distinct periods for swinging directions parallel and 
perpendicular to the beam. Hence, linear anisotropy manifests itself as a tendency for the rectilinear 
oscillations in the intermediate quadrants to degenerate into elliptical orbits. A complete cycle of period 
values should thus be observed over a 180° azimuth span. Since that azimuth interval is normally 
scanned, due to the Foucault precession, in one half of the Foucault period, it is expected that the 
anisotropy features shall be expressed as a Fourier series with the half-Foucault period (TF = 20.68 h) for 
the fundamental component. 

Among the aims of this research, while all sorts of external perturbations, particularly during solar 
eclipses, also tend to induce elliptical orbits, it is important to precisely characterize the amount of 
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ellipticity originating from suspension anisotropy. For this work, only the evolutions of the swinging 
amplitude and of the swinging period over the 18-hour duration of the experiment have been considered.  

 
4. Results and discussion 

Figure 2 shows the evolution of the amplitude. The actual graph consists of 19 803 experimental 
points which are measured with an accuracy of 15 µm rms. This provides enough information to 
determine not only the viscous and aerodynamic damping parameters, but also a 3-harmonic Fourier 
series at the half-Foucault fundamental period corresponding of the energy exchange between the major 
and minor axes when the latter grows up due to suspension anisotropy. It can be verified that the 
maximum of the minor axis of Figure 2 coincides with the minimum of the fundamental wave of the 
major axis. Here, it is worth noting that the huge amount of redundant information available in video 
imagery allows unprecedented precision in the determination of the pendulum characteristics of Table 1.  
In particular, the novel damping law as per Equation 5 is exactly verified within experimental errors for 
the complete duration of the 18-hour experiment. Regarding the anisotropy models of Equations 6 to 8, 
attempts to fit any dissipative model lead to inconclusive results. On the contrary, the conservative model 
yielded the consistent results of Table 1 within the experimental errors. 

In Figure 3, the three synchronized waves characterizing the anisotropy effects on the major axis, the 
minor axis and the swinging period are quite well illustrated. 
 

 
 

Fig. 2. Swinging amplitude as a function of time. The 
available information allows the significant 
determination, in addition to the viscous time constant

1α − and the aerodynamic “time constant”( ) 1

0
aβ −

, of a 

3-harmonics periodical part describing the conservative 
energy exchange between the minor and major axes 
according to the anisotropy tendency to generate a minor 
axis wave at half the Foucault precession period, namely 
20.68 h in Gifu. 

 
Table 1. Parameters pertaining to a fit of Equation 
5 to the amplitude data of Figure 1.  
 

Parameter Value 
Standard 

error 

�
	 (mm) 154.356 0.003 

1/�	 (h) 6.6517 0.0006 

1/ �
 (h) 10.065 0.004 

�!	 (mm) 1.307 0.002 

"!	 (rad) 1.392 0.002 

��	 (mm) 0.3049 0.0006 

"�	 (rad) 6.011 0.002 

�#	 (mm) 0.0386 0.0003 

"#	 (rad) 4.809 0.006 

Residuals (mm) 0.015  
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(a) 

 
(b) 

 
(c) 

FIGURE 3.  (a) Evolution of the Hamiltonian, energy conserving amplitude wave of the semi-major axis, unaffected by the 
damping processes, due to the energy taken by the semi-minor axis. (b) Evolution of the ellipse semi-minor axis as a consequence 
of the azimuth dependence of the period due to suspension anisotropy. (c) Evolution of the zero-amplitude Hamiltonian swinging 
period, unaffected by the damping processes, for a complete Foucault precession period of 41.36 h. 

 
 

 
 

Figure 4. Evolution of the swinging period as a 
function of time. 

 
Table 2. Parameters pertaining to a fit of Equation 3 
to the swinging period data of Figure 4.  
 

Parameter Value 
Standard 

error 
�
	 (s) 5.6686215 0.0000004 
�$ 	 (s) 0.0001198 0.0000011 
% (h) 1.72 0.05 
�!	 (s) 0.0000658 0.0000002 
"!	 (rad) 4.03 0.01 
��	 (s) 0.0000103 0.0000003 
"�	 (rad) 2.02 0.02 
�&	 (s) 0.0000017 0.0000001 
"&	 (rad) 4.22 0.08 
Residuals  (s) 0.000012  

 
Figure 4 and Table 2 illustrate the adjustment of Equation 3a to the swinging period time series. As 

expected, the important harmonic content could be anticipated, since precession acceleration or 
deceleration would cause leads or delays in the instant where the major axis azimuth crosses the 
anisotropy fast and slow axes. Another test of the above anisotropy theory consists in the verification of 
the link (Equations 11 and 12) between the transient period pattern and the anharmonicity parameters, as 
shown in Table 3.  

 
 

Table 3. Experimental verification of anharmonicity parameters with Equations 11 and 12. 
Parameter Theoretical estimate Experimental value 
�$		(µs) 131 120 

1/γ  (h-1) 0.58 0.50 



  

8 

Figure 5 shows the experimental results for the evolution the swinging period as a function of 
swinging azimuth. Again, the 19 803 data points show an average residual of 14 µs. Therefore, only two 
contributions to the mean period are neatly separated: a) transient addition to the ideal zero-amplitude 
period, with a damping azimuth constant of 17.1°; b) a sinusoidal zero-amplitude period which verifies 
exactly the theory of anisotropy according to Equation 3b. In further processing of the pendulum data, it 
is then possible to exactly predict the amount of precession rate attributed to the linear anisotropy of 
suspension, so that any amount there upon will have to be attributed to external perturbations. 

 

 
Fig. 5. Linear anisotropy of suspension for the Gifu pendulum, expressed as a pure sine wave for the swinging 
period in terms of the swinging azimuth. The swinging period includes a transient contribution due to anharmonicity 
and proportional to the square of the swinging amplitude.  

 
5. Conclusion 

The combined use of video imagery and proprietary software involving piecewise curve fitting over 
terabytes of data stream has allowed unprecedented precision in the determination of the Foucault 
pendulum parameters. To the authors’ knowledge, the weak suspension anisotropy of a long Foucault 
pendulum has been experimentally determined for the first time in terms of period measurements with 
sub-microsecond precision. Moreover, a novel damping theory which discriminates between the linear 
and quadratic processes within the oscillation cycle appears to be the sole description capable of 
reproducing the experimental measurements over an 18-hour long experiment. 
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